summaryrefslogtreecommitdiff
path: root/miralib/ex/genmat.m
blob: 27c2f88caf2a1d3ffdc2b314f3d388712aacd83a (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
||The matrix package again, but this time parameterised over an arbitrary
||element type, with a zero, a unit and four functions of arithmetic.
||Example - to instantiate this package with numbers as the element type,
||in another script, say:-
||    %include <ex/genmat> { elem==num; zero=0; unit=1; 
||                           plus=+; minus=-; times=*; divide=/; }

||However another possibility would be to use the package to do matrix
||calculations over rationals (as defined in <ex/rat>) thus:-
||    %include <ex/genmat>
||             { elem==rational; zero=mkrat 0; unit=mkrat 1; 
||               plus=rplus; minus=rminus; times=rtimes; divide=rdiv; }

%export matrix idmat matadd matsub matmult prescalmult postscalmult
	mkrow mkcol det adjoint inv

%free { elem::type; zero,unit::elem; 
	plus,minus,times,divide::elem->elem->elem;
      }

matrix == [[elem]]

idmat :: num->matrix ||identity matrix of given size
idmat n = [[delta i j|j<-[1..n]]|i<-[1..n]]
          where
	  delta i j = unit, if i=j
		    = zero, otherwise

matadd :: matrix->matrix->matrix
matadd x y = map2 vadd x y
             where
	     vadd x y = map2 plus x y

matsub :: matrix->matrix->matrix
matsub x y = map2 vsub x y
             where
	     vsub = map2 minus

matmult :: matrix->matrix->matrix
matmult x y = outer inner x (transpose y)  ||*
inner x y = summate (map2 times x y)
outer f x y = [[f a b|b<-y]|a<-x]

||*note that transpose is already defined in the standard environment

summate = foldl plus zero

prescalmult :: elem->matrix->matrix ||premultiply a matrix by a scalar
prescalmult n x = map (map (times n)) x

postscalmult :: elem->matrix->matrix ||postmultiply a matrix by a scalar
postscalmult n x = map (map ($times n)) x

||we need both the above because element multiplication may not be
||commutative

mkrow :: [elem]->matrix ||make vector into matrix with a single row
mkrow x = [x]

mkcol :: [elem]->matrix ||make vector into matrix with a single column
mkcol x = map (:[]) x

det :: matrix->elem ||determinant, of square matrix
det [[a]] = a
det xs = summate [(xs!0!i) $times cofactor 0 i xs|i<-index xs], if #xs=#xs!0
       = error "det of nonsquare matrix", otherwise
cofactor i j xs = parity (i+j) $times det (minor i j xs)
minor i j xs = [omit j x | x<-omit i xs]
omit i x = take i x ++ drop (i+1) x

parity::num->elem
parity i = unit, if i mod 2 = 0
         = zero $minus unit, otherwise

adjoint :: matrix->matrix ||adjoint, of square matrix
adjoint xs = transpose[[cofactor i j xs | j<-index xs] | i <- index xs]

inv :: matrix->matrix ||inverse, of non-singular square matrix
inv xs = transpose[[cofactor i j xs $divide h | j<-index xs] | i <- index xs]
	 where
	 h = det xs
||The above is a literal transcription of the mathematical definition of
||matrix inverse.  A less naive version of the package would rewrite 
||this to use Gaussian elimination.